Pseudo Steady State Gas Flow in Tight Reservoir under Dual Mechanism Flow
نویسندگان
چکیده مقاله:
Gas reservoirs with low permeability (k<0.1 mD) are among the unconventional reservoirs and are commonly termed as "Tight Gas Reservoirs". In conventional gas reservoirs that have high permeability, the flow of gas is basically controlled by the reservoir permeability and it is calculated using the Darcy equation. In these reservoirs, gas flow due to gas diffusion is ignored compared to Darcy flow. However, diffusion phenomenon has a significant impact on the gas flow in tight gas reservoirs and the mechanism of gas diffusion can no longer be ignored in comparison to Darcy flow. In this study, a dual mechanism based on Darcy flow as well as diffusion is used for the gas flow modeling in tight gas reservoirs. The diffusivity equation is obtained using this method that it indicates the gas flow in a porous media. The conventional dry gas pseudo pressure function is not able to linearize the diffusivity equation including diffusion effect. Subsequently, a new real gas pseudo pressure function is used and a novel real gas pseudo time function is introduced. These pseudo functions consider changes in gas properties with pressure and linearize the diffusivity equation. The linear diffusivity equation is solved analytically for constant gas flow boundary condition under Pseudo-Steady State (PSS) situation. Then, pseudo-steady state analytical solution, based on new functions of pseudo pressure and pseudo time, is obtained.The calculation of reservoir parameters such as permeability, effective diffusion coefficient and original gas in place (OGIP) using reservoir data is the first application of analytical solution. Reservoir data is required to analysis the results of application of introduced model in low permeability gas reservoir.
منابع مشابه
pseudo steady state gas flow in tight reservoir under dual mechanism flow
gas reservoirs with low permeability (k
متن کاملThe approach to steady state in microemulsions under shear flow
We present an analitical study of the dynamical process of the approach to steady state for a driven diffusive system represented by the microemulsion phase of a ternary mixture. The external applied field is given by a “plane Couette”shear flow and the problem is studied within the framework of a time-dependent GinzburgLandau model. A Fokker-Planck equation for the probability distribution of ...
متن کاملA method for bubble volume measurement under constant flow conditions in gas–liquid two-phase flow
Measuring the volume of a bubble, especially at its detachment, is a basic subject in gas-liquid two-phase flow research. A new indirect method for this measurement under constant flow conditions is presented. An electronic device is designed and constructed based on laser beam intensity. This device calculates the frequency of the bubble formation by measuring the total time of the formation p...
متن کاملBicontinuous Microemulsions under Steady Shear Flow
Dynamic response of microemulsions to shear deformation on the basis of twoorder-parameter time dependent Ginzburg-Landau model is investigated by means of cell dynamical system approach. Time evolution of anisotropic factor and excess shear stress under steady shear flow is studied by changing shear rate and total amount of surfactant. As the surfactant concentration is increased, overshoot pe...
متن کاملNewtonian and Non-Newtonian Blood Flow Simulation after Arterial Stenosis- Steady State and Pulsatile Approaches
Arterial stenosis, for example Atherosclerosis, is one of the most serious forms of arterial disease in the formation of which hemodynamic factors play a significant role. In the present study, a 3-D rigid carotid artery with axisymmetric stenosis with 75% reduction in cross-sectional area is considered. Laminar blood flow is assumed to have both Newtonian and non-Newtonian behavior (generalize...
متن کاملSteady Flow Through Modeled Glottal Constriction
The airflow in the modeled glottal constriction was simulated by the solutions of the Navier-Stokes equations for laminar flow, and the corresponding Reynolds equations for turbulent flow in generalized, nonorthogonal coordinates using a numerical method. A two-dimensional model of laryngeal flow is considered and aerodynamic properties are calculated for both laminar and turbulent steady flows...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 31 شماره 4
صفحات 85- 90
تاریخ انتشار 2012-12-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023